讲座内容:
In 2010, Gabor Czedli and E. Tamas Schmidt mentioned that the best cover-preserving embedding of a given semimodular lattice is not known yet [A cover-preserving embedding of semimodular lattices into geometric lattices, Advances in Mathematics 225 (2010) 2455-2463]. That is to say: What are the geometric lattices G such that a given finite semimodular lattice L has a cover-preserving embedding into G with the smallest |G|? In this paper, we propose an algorithm to calculate all the best extending cover-preserving geometric lattices G of a given semimodular lattice L and prove that the length and the number of atoms of every best extending cover-preserving geometric lattice G equal the length of L and the number of non-zero join-irreducible elements of L, respectively. Therefore, we solve the problem on the best cover-preserving embedding of a given semimodular lattice raised by Gabor Czedli and E. Tamas Schmidt.
讲座人简介:
王学平,男,四川遂宁人,教授,理学博士,第十一批四川省学术和技术带头人,博士生导师。现为美国《数学评论》评论员、《模糊系统与数学》编委、中国系统工程学会模糊系统与数学委员会常务理事、中国人工智能学会人工智能基础专业委员会常务理事、中国逻辑学会非经典逻辑与计算专业委员会常务理事。主要从事格理论及其应用、不确定性的数学理论、半环理论及其应用、max-plus代数上线性代数理论与聚合算子等的研究。已在《中国科学》、《数学学报》、《数学年刊》、《SCIENCE CHINA Mathematic》、《ACTA MATHEMATICA SINICA-ENGLISH SERIES》、《Algebra Universalis》、《Fuzzy Sets and Systems》、《Linear Algebra and Its Applications》、《Studia Logica》、《Rocky Mountain Journal of Mathematics》、《IEEE Transactions on Fuzzy Systems》等国内外重要学术刊物上发表论文60余篇。已主持国家自然科学基金面上项目三项、四川省杰出青年科技基金两项、教育部高校博士点基金资助项目一项。2000年获四川省优秀教学成果奖一等奖,2004年与2009年分别获四川省科技进步奖三等奖各一项。