报告题目1:Local properties of positive solutions to elliptic equations with some singular potential
报告人:魏雷教授
报告摘要:
In this talk, we firstly show that uniqueness and exact behavior of positive solutions to the elliptic equations when the potential function is Hardy potential and the parameter is supercritical. Secondly, we will give some results of positive solutions to the elliptic equations when the potential function has strong singularity. Finally, we will give some boundary property of positive solutions to elliptic equations with other type of potential.
报告人简介:
魏雷,江苏师范大学教授,1997年-2004年在徐州师范大学读本科、硕士,2010年在东南大学数学系获博士学位,主要研究方向:椭圆型方程中的奇异问题、反应扩散方程中的自由边界问题。目前在Calc. Var. Partial Differential Equations,J. London Math. Soc., J. Differential Equations, J. Dynam. Differential Equations, Proc. Roy. Soc. Edinburgh Sect., Commun. Contemp. Math., Discrete Contin. Dyn. Syst等杂志上发表论文10多篇。
报告题目2:Multi-bump bound states for a Schrodinger system
报告人:唐仲伟教授
报告摘要:
In this talk, we present some results for the existence of Multi-bump solutions for the 2×2 system of coupled Schrödinger equations. This is a joint work with Dr Lushun Wang.
报告人简介:
唐仲伟,2004年从中国科学院数学与系统科学研究院博士毕业后在北京师范大学工作至今,现为北京师范大学数学科学学院党委书记,教授,博士生导师,北京市数学会副理事长。主要研究方向是非线性偏微分方程及非线性分析。在2007年至2009年期间作为洪堡学者访问德国学生大学两年。目前已经在Calc. Var. Partial Differential Equations, J. Differential Equations, Z. Angew. Math. Phys,Adv. Nonlinear Stud.,Discrete Contin. Dyn. Syst.等国内外学术期刊上发表论文40余篇,主持国家自然科学基金3项。编写《偏微分方程》教材1本。
报告题目3:Liouville Type Theorem for Some Nonlocal Elliptic Equations
报告人:余晓辉副教授
报告摘要:
In this talk, we will introduce some Liouville theorems for elliptic equations with nonlocal nonlinearities. Because of the nonlocal nonlinearities, it is not easy to apply the moving plane method directly. Moreover, since the nonlinearity is only assumed to be continuous, the classical maximum principles cannot be applied. To overcome our difficulties, we turn the equation into an integral-differential system, then we use the moving plane method in an integral form to prove our results. Moreover, we raised the nonlocal boundary value condition for the first time.
报告人简介:
余晓辉,武汉大学经济学、理学双学士,中国科学院武汉物理与数学研究所理学博士,现为深圳大学澳门新葡平台app官网副教授,主要研究方向为非线性椭圆偏微分方程。目前已经在 J. Funct. Anal., Calc. Var. Partial Differential Equations, J. Differential Equations, Discrete Contin. Dyn. Syst.等国内外学术期刊上发表论文20余篇,主持国家自然科学基金四项。2012年当选为深圳大学首届优秀青年教师,2014年当选为广东省高校优秀青年教师培养计划对象,2015年入选深圳市高层次人才,曾多次获得深圳大学学术创新奖。