报告摘要:
I will discuss two proofs of the celebrated Monge-Kantorovich theorem in discrete Optimal Transport (OT). One of them is extremely elementary, self-contained, and can be understood by beginners. I will then describe an application to Liquid Crystals, which provides an explicit formula for the least energy required to produce a configuration with assigned defects. Next I will present striking connections that we recently discovered with P. Mironescu between OT and least area formulas for the classical Plateau problem.
报告人简介:
Haïm Brezis 院士, 主要从事非线性方向和偏微分方程方面的研究。是法国科学院院士、欧洲科学院院士、美国科学院外籍院士等8个国家院士。获法国佩科特大奖,巴黎科学院卡里埃尔奖,安培大奖等4项大奖。至今指导58位博士生,拥有630多位学术后裔,其中3位获得数学界最高荣誉菲尔兹奖(Fields Medal)奖,至少4位获院士头衔。编著专著和书6部,其中《泛函分析》教材是传世之经典。在国际数学顶尖期刊 Ann Math, Invent. Math., J AMS, Comm. Pure Appl. Math.等发表学术论文224篇。更多研究工作可浏览Haim Brezis 院士主页http://www.math.rutgers.edu/~brezis/。