Abstract: We discuss population models in forms of reaction-diffusion equations and integro-difference equations, which describe species growth and dispersal in a dynamic habitat. We show the results regarding persistence, spreading speeds, and traveling waves for a species in an expanding or contracting habitat and for a species intereacting with a competitor. The mathematical analysis involves linear determinacy, lower and upper solutions on moving intervals.
报告人简介:李秉团,University of Louisville教授, 现任“Discrete and Continuous Dynamical Systems”编委。长期从事微分方程、生物数学模型的研究工作。1998 年于 Arizona State University 获博士学位。1999 年至 2001 年分别在 University of Minnesota、University of Utah 从事博士后研究工作。2001 年至今在 University of Louisville 数学系任助理教授、副教授、教授。已在“SIAM J. Appl. Math.” “J. Differential Equations” “J. Math.Biol.” “Nonlinearity”“Bull. Math. Biol.”“Math.Biosci.”等期刊上发表论文 50 余篇。