讲座时间:12月3日9:30,12月4日9:00
报告地点:12月3日(胡峻、李方)腾讯会议:214-510-202,12月4日(肖杰、邓邦明、张贺春)腾讯会议:197-449-683
主办单位:澳门新葡平台app官网
报告题目一:On the center conjecture for the cyclotomic Hecke algebras and cyclotomic KLR algebras
报告人简介:胡峻,北京理工大学数学学院教授、博士生导师。中国数学会理事与北京市数学会常务理事。在典型群与Brauer代数之间的正特征域上的Schur-Weyl对偶、分圆KLR代数的Z-分次表示以及G(r,p,n)型分圆Hecke代数的模表示等方面取得一系列成果,解决了包括Lusztig、Brundan、Kleshchev、王伟强以及Fayers等人提出的一些猜想。2015年获得国家杰出青年科学基金资助,2021年获得教育部高等学校科学研究优秀成果自然科学一等奖。在J. Reine Angew. Math., Math. Ann., Adv. Math., IMRN, T. AMS, J. Algebra等刊物发表论文50多篇。
报告简介:The center of the cyclotomic Hecke algebra of type G(r,1,n) is conjectured to be equal to the set of symmetric polynomials in its Jucys-Murphy operators and has dimension independent of the characteristics of the ground field and defining parameters. There are similar conjectures for the cyclotomic KLR algebras. In this talk we shall report our recent progress on these conjectures.
报告题目二:On Galois-like theory of cluster algebras and some examples from surfaces
报告人简介:李方,浙江大学数学学院教授、博士生导师,高等数学研究所所长。中国数学会理事、中国高等教育学会理事、教育数学专委会常务副理事长。曾入选教育部“新世纪优秀人才支持计划”、浙江省“151”人才工程人选等。曾获浙江省科技进步奖和浙江省高等学校科研成果奖等。多年来先后主持国家自然科学基金项目七项。现为国际SCI刊物Electronic Research Archive等编委。主要研究代数学和表示论,特别近七年在丛代数(cluster algebra)领域取得获国际关注的重要成果,建立新研究方法以解决遗留20年左右系列重要问题,包括丛代数的正性猜想、丛代数分母向量的正性猜想、无圈符号斜对称丛代数的完全性猜想,等等。至今发表论文一百多篇,代表作发表在包括Compositio Math., Adv.in Math., Trans.AMS, Math.Annalen, Comm.Math.Phys.等重要数学刊物上。研究和人才培养的成果曾被“浙江基础研究”两次专题报道。
报告简介:One of the key-points in Galois theory via field extensions is to build up a correspondence between subfields of a field and subgroups of its automorphism group, so as to study fields via methods of groups. As an analogue of the Galois theory, we study the relations between cluster subalgebras of a cluster algebra and subgroups of its automorphism group and then to set up the Galois-like method. As examples, we characterize the cluster automorphism group of cluster algebras from feasible surfaces. For the kind of cluster algebras, as the answers of two conjectures given in the first part, we prove the rank invariants of maximal cluster subalgebras under action of subgroups of the cluster automorphism group of such a cluster algebra and moreover construct the descending series of cluster subalgebras via an ascending series of subgroups.This work is joint with Jinlei Dong.
报告题目三:Counting representations of quivers over finite fields
报告人简介:邓邦明,清华大学数学科学系教授、博士生导师,1993年于瑞士苏黎世大学毕业获博士学位,研究方向为代数表示论和量子群。曾于1997年8月至1999年5月任德国比勒菲尔德大学洪堡学者,于2002年获教育部第三届高校青年教师奖,于2007年获教育部自然科学一等奖(3/4)。现任Front. Math. China编委,主持或完成国家自然科学基金重点项目等多项。相关研究成果见于Comm. Math. Helvetici、Trans. AMS.、Adv. Math.等杂志。
报告简介:This talk focuses on countingrepresentations of quivers over finite fields. We introduce Jiuzhao Hua’s formula, which can be viewed as a q-analogue of the Kac denominator identity, and a Hall algebra approach to Kac’s theorem over finite fields. Some generalizations of Hua’s formula will be also presented.This talk is based on joint work with Chenyang Ma.
报告题目四:The multiplication formulas of quantum cluster algebras
报告人简介:肖杰,清华大学数学科学系教授、博士生导师,国务院第八届学位委员会数学学科评议组成员。1988获北京师范大学博士学位,1991年至1993年,在比利时安特卫普大学从事博士后研究。主要科研方向为代数表示论和量子群。曾获得德国洪堡基金、国家杰出青年基金、教育部跨世纪人才基金,2007年获教育部自然科学一等奖(1/4)。 担任中国科学、数学学报(中、英)、数学年刊(中、英)、Algebra Colloquium等编委,Pure and Applied Mathematics Quarterly副主编,曾担任中国数学会常务理事。2006年11月至2017年5月任清华大学数学科学系主任,2014年10月至2017年5月任清华大学理学院院长。相关研究成果发表于Invent. Math. Duke Math. Compositio Math. J.Algebra等国际著名杂志。
报告简介:By applying the property of Ext-symmetry and the vector bundle structures of certain fibres, we introduce the notion of weight function and prove the multiplication formulas for weighted quantum cluster characters associated to abelian categories (over finite fields) with the property of Ext-symmetry and 2-Calabi-Yau triangulated categories with cluster-tilting objects. This is joint work with Zhimin Chen and Fan Xu.
报告题目五:Automorphisms and representations of quasi-Laurent polynomial algebras
报告人简介:张贺春,清华大学数学科学系教授、博士生导师,1990年于中国科学院毕业获博士学位,研究方向为无限维李代数和量子群。曾在丹麦、日本、荷兰、澳大利亚等国家多所大学与研究所进行博士后和访问研究。相关研究工作见于Comm. Math. Phys.、Lett. Math. Phys.、J. Algebra等杂志。
报告简介:We study automorphisms and representations of quasi polynomial algebras (QPAs) and quasi-Laurent polynomial algebras (QLPAs).
For any QLPA defined by an arbitrary skew symmetric integral matrix, we explicitly describe its automorphism group at generic q and at roots of unity. Any QLPA is isomorphic to the tensor product of copies of the QLPA of degree 2 at different powers of q and its center, thus the study of representations of QPAs and QLPAs largely reduces to that of Lq(2) and Aq(2), the QLPA and QPA of degree 2. We study a category C of Aq(2)-modules satisfying some local finiteness condition, classifying the simple objects and providing two explicitly constructions for them. One construction makes use of restrictions of simple Lq(2)-modules twisted by automorphisms of Lq(2), and the other explores a class of holonomic SDq-modules for the algebra of q-differential operators SDq, which is a completion of Lq(2) with respect to a t-adic topology.