报告题目:Gpp dimensions of complexes
报告人简介:刘仲奎,西北师范大学校长、教授、博士生导师、民盟中央委员、甘肃省政协常委、民盟甘肃省委员会副主任委员,甘肃省人大常委会委员。主要从事环的同调理论以及半群代数理论方面的研究与教学工作。曾经解决了前苏联、德国、加拿大数学家提出的五个公开问题。已在J. Algebra、J. Pure Appl. Algebra、Comm. Algebra、Glasgow Math. Journal、Semigroup Forum等刊物上发表论文数十篇。在科学出版社出版专著《A Homological approach to the Theory of Monoids》(和Javed Ahsan教授合著)、《半群的S-系理论》两部。在高等教育出版社出版面向21世纪课程教材《高等代数》一部。1996年享受政府特殊津贴;1997年被评为国家“中青年有突出贡献专家”;2002年获教育部高等学校优秀青年教师教学科研奖;2010年入选甘肃省领军人才第一层次;
报告简介:Let R be a ring and X a complex of R-modules which admits a special Gorenstein projective precover. The dimension of X related to special Gorenstein projective precovers, Gppd(X ), is considered. We establish a relationship between the vanishing of relative cohomology groups and the finiteness of Gpp dimensions of complexes. This is a Gorenstein version of a conclusion established by Avramov and Foxby.
报告题目:Mutations of (relative) maximal rigid objects in two-termsubcategories
讲座人:朱彬
讲座时间:12月7日20:00
报告地点:腾讯会仪:665-400-087
报告人简介:朱彬,清华大学数学科学系教授、博士生导师,1999年于德国比勒菲尔德大学毕业获博士学位。研究方向为代数表示论和丛理论。曾在德国,英国,美国,法国,比利时,加拿大,韩国,日本等国家多所大学与研究所进行访问研究。主持或完成多项国家自然科学基金项目。相关论文见于Trans. AMS.、J. Lond. Math. Soc.、Math. Z.、J. Algebra等杂志。
报告简介:Let C be a triangulated category, R be a rigid object. R∗R[1] denotes the two-term subcategory. We define the mutations of (relative) maximal rigid objects in R∗R[1] by constructing the explicit exchange triangles. The mutations are compatible to the mutations of supporttau−tilting modules. By applying to the cluster categories associated to a marked surface (with or without punctures), we prove that the mutation graph of support tau-tilting modules over skew-gentle algebras is connected. This reports on the work with Ping He and Yu Zhou.