刘振海简介:
1992.01-1994.10:匈牙利科学院数学研究院博士;
1994.11-2004.12:长沙理工大学,副教授、教授;
2005.01-2009.12:中南大学特聘教授(升华特聘教授),博士生导师;
2009.09-今:广西民族大学数学与物理学院特聘教授,广西高校优化控制与工程计算重点实验室主任,南京理工大学博士生导师。
电话:0771-3265663,邮箱:zhhliu100@126.com
享受国务院“政府特殊津贴”专家,湖南省新世纪121人才工程第一层次人选,广西特聘专家。主要从事非线性泛函分析、非线性分数阶偏微分方程、发展型方程的能控性和控制理论和H-半变分不等式的研究。在《SIAM J.Optim.》《SIAM J. Control Optim.》《Calc. Var.PDE》《Journal of Differential Equations》《Journal of Functional Analysis》《Inverse Problems》《Nonlinearity》等国际重要学术期刊发表论文200多篇。获广西自然科学二等奖2项,湖南省自然科学二等奖1项,湖南省科技进步奖三等奖1项。主持完成7项国家自然科学基金项目(其中6项面上基金、1项地区项目)和多个国际合作项目。
摘要:In this talk, we introduce a class of feedback control systems described by an evolution hemivariational inequality involving history-dependent operators. Under the mild conditions, first, we show a priori estimates of the solutions to the feedback control system. Then, an existence theorem for the feedback control system is obtained by using the wellknown Bohnenblust-Karlin fixed point theorem. Moreover, we study an optimal control problem driven by the feedback control system, and establish its solvability. Finally, a parabolic partial differential system with Clarke subgradient term is considered to illustrate the applicability of the theoretical results